Mathias Louboutin

Post Docotoral Fellow at Georgia Institute of technology. My main research focuses on high-performance computing for large-scale PDE constraints optimization (medical imaging, seismic imaging) on standard clusters and in the Cloud. In particular I work intensively on open source solutions in Julia and Python and high-level abstractions for high-performance computing such as Devito (Finite difference DSL) or JUDI.jl (linear algebra abstraction for PDE constraint optimization). My secondary research project is aimed at computational and algorithmic solutions for large-scale machine learning.


16:30 UTC

InvertibleNetworks.jl - Memory efficient deep learning in Julia

We present InvertibleNetworks.jl, an open-source package for invertible neural networks and normalizing flows using memory-efficient backpropagation. InvertibleNetworks.jl uses manually implement gradients to take advantage of the invertibility of building blocks, which allows for scaling to large-scale problem sizes. We present the architecture and features of the library and demonstrate its application to a variety of problems ranging from loop unrolling to uncertainty quantification.

Platinum sponsors

Julia Computing

Gold sponsors

Relational AI

Silver sponsors

Invenia LabsConningPumas AIQuEra Computing Inc.King Abdullah University of Science and TechnologyDataChef.coJeffrey Sarnoff

Media partners

Packt Publication

Fiscal Sponsor