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Motivation: Regularizing Neural ODEs

We want to learn ODEs that are easy to solve.
Optimize higher order properties of the ODE solution:
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Learned dynamics are
unnecessarily complex and
require many function
evaluations to solve.

Dynamics with third derivative
regularized require fewer
evaluations to solve.

Kelly et al. ”Learning Differential Equations that are Easy
to Solve” arXiv preprint (2020).

https://github.com/jacobjinkelly/easy-neural-ode

TL;DR: Don’t Nest First Order!

If you want higher order derivatives like

∂kf (x)

∂ xk
v k

the näıve approach to nest first order derivatives

deriv(· · · (deriv(f )))(x)(v)

may work with nice AD (like JAX)
but will scale exponentially in the order of differentiation

O(exp(D))

because nesting first order does not share common work.

First-Order Derivatives

Given a composite function f : Rn → Rm

f = (g ◦ h)(x) = g(h(x))

input representing primal output

z0 = h(x)

and first-order perturbation in direction v of h(x)

z1 = ∂h(x)[v ]

First-order AD computes primal output and first-order
perturbation in direction v of f (x)

(y0, y1) = (f (x), ∂f (x)[v ])

Where chain-rule gives

∂f (x)[v ] = ∂g(h(x)) ∗ ∂h(x)[v ] = ∂g(z0)[z1]

Implicit Jacobian ∈ Rm×n vector v ∈ Rn product:

∂f (·)[v ] =
∂f (·)
∂ ·

[v ] ∈ Rm

Higher-Order Derivatives

Inputs representing higher-order perturbations in direction
v of h(x)

(z0, . . . , zD) = (h(x), . . . , ∂Dh(x)[vD])

Higher-order perturbations in direction v of f (x)

(y0, . . . , yD) = (f (x), . . . , ∂Df (x)[vD])

Implicit Jacobian ∈ Rm×n×···×n vector v ∈ Rn product:

∂kf (·)[v k] =
∂kf (·)
∂ (·)k

[v ] · · · [v ] ∈ Rm

Higher derivatives have more complicated dependence on
lower order perturbations than chain rule.
e.g. k = 2

y2 = ∂2f (x)[v 2]

= ∂g(z0)[z2]︸ ︷︷ ︸
1st-order of g on 2nd-order of h

+ ∂2g(z0)[z2
1 ]︸ ︷︷ ︸

2nd-order of g on 1st-order of h

First-order Automatic Differentiation

With primal value x0 and first order perturbation,

v =
∂x(t)

∂t
We have the expansion

x(t) = x0 + vt

Given f and ∂f (x0), compute

f (x(t)) = y0 + y1t

With coefficients
y0 = f (x0)

y1 = ∂f (x0)[v ]

Jacobian-Vector Product JAX API

jax.jvp(f , x0, v)

Taylor Polynomial Derivative Rules

Implemented by overloading primitives derivatives.
Interpreted as evaluating on polynomial inputs:
(Evaluating Derivatives. Griewank and Walther. 2008)

u = u0 + u1t +
1

2!
u2t

2 + · · · + 1

D!
uDt

D ∈ Rn

w = w0 + w1t +
1

2!
w2t

2 + · · · + 1

D!
wDt

D ∈ Rn

Addition
Primitive: v = u + cw
Derivatives: vk = uk + cwk

Multiplication
Primitive: v = u ∗ w
Derivatives: vk =

∑k
j=0 ujwk−j

v0 = u0 ∗ w0

v1 = u0 ∗ w1 + u1 ∗ w0 (familiar product rule)

v2 = u0 ∗ w2 + 2 ∗ u1 ∗ w1 + u2 ∗ w0

Division
Primitive: v = u/w

Derivatives: vk = 1
w0

(
uk −

∑k−1
j=0 vjwk−j

)
Exp
Primitive: v = exp(u)
Derivatives: vk = 1

k

∑k
j=1 jujvk−j

Sin
Primitive: s = sin(u)
Derivatives: sk = 1

k

∑k
j=1 jujck−j

Cos
Primitive: c = cos(u)
Derivatives: ck = 1

k

∑k
j=1−jujsk−j

Linear and Bi-Linear Jets

Addition is a special case of Linear vk = f (uk,wk)
def linear_jet(f, primals, series, **params):

y_0 = f(*primals, **params)

y_s = [f(*coeffs, **params) for coeffs in series]

return y_0, y_s

Multiply of Bi-Linear vk =
∑k

j=0 f (uj,wk−j)
def bilinear_jet(f, primals, series, **params):

y_0 = f(*primals, **params)

u, w = zip(primals + series)

y_s = conv(f,u,w,0,k, **params)

return y_0, y_s

Higher-order Automatic Differentiation

Primal value x0 and higher order perturbations,

xk =
∂kx(t)

∂tk

We have the expansion

x(t) = x0 + x1t +
x2t

2

2!
+ · · · + xDt

D

D!

Given f and ∂kf (x0), compute

y(t) = y0 + y1t +
y2t

2

2!
+ · · · + yDt

D

D!

With coefficients
y0 = f (x0)

y1 = ∂f (x0)[x1]

y2 = ∂f (x0)[x2] + ∂2f (x0)[x2
1 ]

y3 = ∂f (x0)[x3] + 3∂2f (x0)[x1x2] + ∂3f (x0)[x3
1 ]

Taylor-Mode JAX API

jax.jet(f , x0, [v , 0, . . . , 0])

or more generally

jax.jet(f , x0, [x1, x2, . . . , xD])

Performance Taylor v.s. Nesting

Näıve Nesting First Order: O(expD)
Taylor Mode: O(D logD)
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Figure: Scaling for higher derivatives of 2-layer MLP.

Relationship Between odeint and Taylor

ODEs are specified by first derivative

dz(t)

dt
= fθ(z(t), t)

A nice recursive relationship in the Taylor expansion z(t)

z(t) ≈ z0 +
dz(t)

dt
t + · · · ≈ z0 + fθ(z(t), t)t + · · ·

odeint as a primitive can use this
Primitive: z = odeint(f , z0)
Derivatives: z k = jet(f , z 0, (z 1, . . . , z k − 1))

Taylor AD in Julia?

TaylorSeries.jl is excellent. However,
highly-mutating and scalarized, difficult to compose with
reverse mode gradients.
TaylorIntegration.jl implements jets of ODE
solutions.
PyCall.jl works great with JAX, and will be getting
even easier!


