Michael F. Herbst

By training a chemist, who got more and more twisted towards the "dark side" of numerical analysis. Now working as a PostDoc at the Applied and Computational Mathematics lab of RWTH Aachen University, Germany. Lead developer of DFTK, a Julia code for mathematical research in on density-functional theory (a quantum chemistry method).

Talks:

14:00 UTC

A mathematical look at electronic structure theory

07/22/2021, 2:00 PM — 5:00 PM UTC
Green

Electronic structure theory is a fascinating interdisciplinary field. Physics, chemistry, materials science, mathematics, high-performance computing ... they're all in it. Rooted at the quantum-mechanical description of electrons it is the backbone for quite a few simulation methods in the chemical and physical sciences. Here we'll focus on the numerical tools required to solve standard problems in the field like density-functional theory, which --- as we will see --- is challenging in itself.

12:30 UTC

Building a Chemistry and Materials Science Ecosystem in Julia

07/28/2021, 12:30 PM — 2:00 PM UTC
BoF/Mini Track

Julia has a growing presence in the computational chemistry and materials science communities, already exhibiting best-in-class performance in several domains. However, a common set of tools, datatypes, and norms are largely lacking at present. In this session, we will have discussions to build consensus around a vision for such tools, with an emphasis on reusable structures/workflows, such as I/O for common file types, bindings for widely-used codes from other languages, and mathematical tools.

Platinum sponsors

Julia Computing

Gold sponsors

Relational AI

Silver sponsors

Invenia LabsConningPumas AIQuEra Computing Inc.King Abdullah University of Science and TechnologyDataChef.coJeffrey Sarnoff

Media partners

Packt Publication

Fiscal Sponsor

NumFOCUS